terça-feira, 25 de outubro de 2016

Matemáticos espanhóis resolvem problema de 50 anos

Aconteceu em   .

O problema matemático existia desde a década de 60, quando o russo Vladimir Arnold avançou com a equação.



Dois matemáticos espanhóis conseguiram solucionar um problema matemático que já existia há 50 anos. Daniel Peralta e Alberto Enciso, pesquisadores do Instituto de Ciências Matemáticas de Madri (CSIC), explicaram através de cálculos por que as partículas de gases e líquidos não permanecem fixas quando são submetidas a movimentos, como acontece com as moléculas de sólido.
A origem do problema nasceu há 250 anos quando o físico e matemático Leonhard Euler (1707 - 1783) criou uma equação para descobrir as leis de movimento que regem o comportamento das partículas dos gases e líquidos que estão em repouso. A forma matemática foi batizada então com o sobrenome do suíço. 
O estudo de Daniel Peralta e Alberto Enciso foi baseado no avanço da equação criado pelo matemático russo Vladimir Arnold em 1960. Os resultados do estudo foram publicados na revista Annals of Mathematics. Os responsáveis pela descoberta afirmaram que as moléculas têm linhas de corrente extremamente complexas.
 A pesquisa pode ser aplicada a moléculas que formam o conteúdo de um copo da água. Quando o líquido está aparentemente estável, suas partículas estão em movimento contínuo dentro de seu meio. Os matemáticos então confirmaram sua suspeita de que as trajetórias das moléculas não são simples, mas isso ainda não foi matematicamente provado.

Nenhum comentário:

Postar um comentário